Protocol:

DETERMINATION OF THE PROPERTIES OF INSULATING MATERIALS

A2

Instructor: Ing. Šimon Baránek, Ing. Jindřich Melichar, PhD.

A. TASK ASSIGNMENT AND BASIC PROPERTIES OF INSULATION TEST SAMPLES

Determine the key properties of insulating materials:

- Bulk density ρ_{ν} [kg/m³],
- Thermal conductivity coefficient λ_{sam} [W/(m.K)],
- Water absorption during partial immersion W_p [kg/m²],
- Stress at 10% deformation σ_{10} , [kPa].

Description and basic properties of test samples:								
Description of the material (test specimen):								
Average thickness of test sample $d_m = \dots m$,								
Length of test specimen: $I_1 = \dots m$,								
Width of test sample: $I_2 = \dots m$,								
Veight of test sample/initial weight of sample intended for water absorption test by partial immersion according to method A: $m / m_0 = \dots kg$.								
Volume weight of material: $\rho_v = \dots kg/m^3$.								
Determination of the thermal conductivity coefficient in a steady state using the plate method according to ČSN 12667 (heat flux meter method according to ISO 8301):								
Brief description of the test procedure:								
Average thickness of the test sample: $d_m = \dots m$,								
Surface temperature of the warm side of the test sample: θ_{hd} =°C,								
Surface temperature of the cold side of the test sample: $\theta_{cd} = \dots \circ C$,								
Voltage on the heat flux density meters: $U = \dots V$,								
Calibration constant: $k_m = \dots W/(V \cdot m^2)$,								
Thermal conductivity coefficient: $\lambda_{sam} =$								
Determination of water absorption during partial immersion according to ČSN EN ISO 29767:								
Brief description of the test procedure:								

,	Weight of the test sample after partial immersion for 24 hours: $m_{24} = \dots kg$, Area of the bottom surface of the test sample: $A_p = \dots m^2$. Water absorption during partial immersion: $W_p = \dots kg/m^2$ Determination of stress at 10% deformation (compressive strength) according to ČSN EN 82 Brief description of the test procedure:								
,	Working diagram of the insulator during the pressure test:								
Z									
Force F									
Fol									
						De	eformation	of test sampl	le X [mi
	nitial deformation: X ₀ = mm ,								-
	10% deformation X ₁₀ = mm ,								
	Deformation for force value at normalized 10% deformation: X = mm ,								
	Force at 10% deformation: $F_{10} = \dots N$,								
	Stress at 10% deformation: $\sigma_{10} = \dots kPa$								
	Conclusion:								