CONCRETE MIX DESIGN BIA002 TESTING AND TECHNOLOGY Institute of Technology of Building Materials and Components, FCE, BUT CT1 Name and last name:: Study group: Date:

1. INPUT PARAMETERS [EN 206-1, Z3]
Create concrete mix design for strength grade C ______
Requirements according to standard: EN 206-1
Minimal strength grade: C ______ kg/m³
Min. cement amount: mc = _____ kg/m³
Max. water cement ratio: W= _____

Other requirements and parameters:
Required consistency/workability: Slump test - S3 acc. EN 12350-2
Air amount in fresh concrete: 2%

Cement used: CEM II/B-S 32,5 R, production plant: Mokrá, CZ

Aggregates:

Fine quarried

0-4 mm, Žabčice 4-8 mm, Želešice

Coarse crashed Coarse crashed

8-16 mm. Želešice

Admixture: plasticizer - Mapelast N10, dosage 1% of mc

Water: tap water

2. CALCULATION OF AGGREGATE MIXTURE

Calculate oversize for mesh sizes from table 1. Enter results into table 2

Table 1: Grain size distribution analysis - partial oversize (rests) for each mesh in kg

Mesh size			8
	Partial oversize		
[mana]	Žabčice 0-4 mm	Želežina 4 0 mana	7-1-X: 0 40
[mm]		Želešice 4-8 mm	Želešice 8-16 mm
	[kg]	[kg]	[kg]
63	0,0	0,0	0,0
32	0,0	0,0	0,0
16	0,0	0,0	0,0
8	0,0	0,0759	1,706
4	0,0530	0,6288	0,180
2	0,1821	0,2220	0,074
1	0,1415	0,0438	0,0
0,5	0,2941	0,0157	0,0
0,25	0,2352	0,0046	0,0
0,125	0,0859	0,0041	0,01
0,063	.0,0064	0,0040	0,01
0	0,0019	0,0016	0,02
Check	1,0001	0,9992	2,000

Table 1: Grain size distribution analysis - partial oversize (rests) for each mesh in %

Mesh size	Partial oversize			
[mm]	Žabčice 0-4 mm	Želešice 4-8 mm	Želešice 8-16 mm	
	[%]	[%]	[%]	
63	0	0	0	
32	0	0	0	
16	0	0	0	
8	0	7,5	85,3	
4	5,3	62,9	9	
2	18,2	22,2	3,7	
1	14,2	4,4	0	
0,5	29,4	1,5	0	
0,25	23,5	0,5	0	
0,125	8,6	0,4	0,5	
0,063	0,6	0,4	0,5	
0	0,2	0,2	1	
Check	100	100	100	

Grain size distribution curve is designed according to: Fuller Formulae:

$$y = \left(\frac{d}{D_{\text{max}}}\right)^n \cdot 100[\%]$$

Parameters of final aggregate mixture

0-4 mm , Žabčice - _42,8__ %

4-8 mm , Želešice - _28,3__ %

8-16 mm , Želešice - _28,9__ %

4. WATER AMOUNT CALCULATION

Deduce water amount from table and according to grain size curve and required consistency.

Proposed water amount m_w = ___ kg/m³

5. CEMENT CONTENT CALCULATION

Calculate cement amount from max. water cement ratio according to EN 206-1.

Water cement ratio value from EN 206-1: W =

Water cement ratio formulae: W =

Cement content: m_c = ----- = kg/m³

6. CALCULATION OF AGGREGATE AMOUNT

Calculate it from EAV

$$m_A = kg/m^3$$

Division of calculated aggregates into fractions:

0-4 mm , Žabčice - _42,8__ % kg 4-8 mm , Želešice - _28,3__ % kg 8-16 mm , Želešice - _28,9__ % kg

6. CONCRETE COMPOSITION

Concrete C ______ kg/m³

0-4 mm Žabčice _____ kg/m³

4-8 mm Želešice _____ kg/m³

8-16 mm Želešice _____ kg/m³

Cement content mc: ____ kg/m³

Admixture content m_{AD}: _____ kg/m³

Water amount m_w: ____ kg/m³

Design bulk density of fresh concrete mixture: D = ____ kg/m³

7. CONCLUSION