MODULUS OF ELASTICITY OF CONCRETE | E

Within the limits of Hooke's law, the modulus of elasticity is the proportionality constant between stress and strain. For concrete, it corresponds to the slope of the straight line fitted to the initial portion of the stress-strain diagram in compression. In general, the modulus of elasticity is a specific measure of the stiffness of a solid material in compression (or tension).

This is a relatively important property of concrete that affects the behavior of structures, particularly slender or prestressed ones (with respect to deflections, creep, etc.).

1 Determination of the Static Modulus of Elasticity of Concrete in Compression

The static modulus of elasticity is determined from the deformations that occur under known loading conditions.

1.1 Measurement Principle

A test specimen for determining the static modulus of elasticity of concrete in compression, according to ISO 1920-10, can take the shape of a prism or a cylinder. Its slenderness, i.e., the ratio of length to cross-sectional dimension, must be at least 2.

The testing principle involves loading the test specimen in a compression testing machine while simultaneously measuring the resulting deformations. The test is performed cyclically—at least three cycles are carried out, during which the specimen is subjected to varying loads. The load levels are chosen so as not to completely unload the specimen and to ensure that loading remains within the elastic range (within the validity range of Hooke's law). According to ISO 1920-10, the basic (lower) stress level is always $\sigma_b = 0.5 \text{ MPa (N/mm^2)}$, and the upper stress level should correspond to one-third of the compressive strength of the tested concrete, $\sigma_a = f_c/3 \text{ MPa (N/mm^2)}$.

1.2 Determination of Compressive Strength of Comparative Specimens and Load Levels

Before testing, the compressive strength of the tested concrete must be known to correctly set the upper load stress level σ_a . According to ISO 1920-10, the compressive strength of concrete is determined using three comparative specimens of the same size and shape, which were manufactured and cured in the same manner as the specimens used for determining the static modulus of elasticity.

From the average compressive strength f_c of the comparative specimens, the stress level used for determining the static modulus of elasticity $(f_c/3)$ is calculated. During testing, where the stress level in the tested concrete is cyclically changed from the basic stress σ_b to the upper stress σ_a , the deformation response of the specimen is monitored. Based on the stress levels already determined and the loaded area A of the test specimen, the basic force F_b and the upper force F_a are calculated:

$$F_b = 0.5 \cdot A \tag{1}$$

$$F_a = \frac{f_c}{3} \cdot A \tag{2}$$

where F_b is the basic force in N, 0.5 is the basic stress in MPa, A is the loaded area of the test specimen (calculated from the determined dimensions of the specimen) in mm², F_a is the upper force in N, and f_c is the average compressive strength of the comparative specimens in MPa.

The force values must be adjusted by rounding according to the scale of the testing machine used—in this case, to whole kN. The actual values of the basic stress σ_b and the upper stress σ_a must be recalculated based on the adjusted force values.

1.3 Preparation of Test Specimens and Centering

The test specimen must be prepared before the test itself. Instruments for measuring length changes (in this exercise, mechanical extensometers with digital indicators) must be attached to the sides of the specimen so that the measured points are equidistant from both ends of the specimen and lie along its longitudinal axis. Deformations (or strains) must be measured on at least two opposite sides of the specimen, see Figure 1.

Figure 1: Placement of Mechanical Extensometers on the Test Prism

When loading the test specimen, it is important to ensure that the load is applied as evenly as possible across the entire loaded area, i.e., that the loading is centric. During loading, the centricity of the specimen must be verified. The time progression of centering is graphically depicted in Figure 2.

The test specimen, with extensioneters attached, is placed in the testing machine (Point 1A). Next, the specimen is loaded to the basic stress level σ_b , and after 60 seconds, readings are taken from all devices (Point 1B). The stress is then gradually increased to the upper stress level σ_a , and after another 60 seconds, readings are taken again (Point 1C). If the individual strains ε (or deformations Δl) differ by more than 20% from their average value, the test specimen is not centered and must be fully unloaded.

Based on the readings from the extensioneters, the position of the test specimen in the testing machine is adjusted, and the entire procedure is repeated (Points 2A to 2C). If it is determined that the specimen is still not centered, the process is repeated again. Once centering is successful, the test specimen is unloaded to the basic stress level σ_b , and the entire test is completed.

Figure 2: Graphical Representation of Specimen Centering

1.4 Loading the Test Specimen

The time progression of the static modulus of elasticity test is graphically shown in Figure 3. After successfully centering the specimen, the load is maintained at the basic stress level σ_b for 60 seconds. After recording the extensometer readings, the load is gradually increased to the upper stress level σ_a , where readings are again taken after 60 seconds.

One cycle consists of applying the lower stress level for 60 seconds, recording the readings, applying the upper stress level for 60 seconds, and recording the readings. The entire test comprises at least two preliminary loading cycles, followed by a measurement loading cycle. The values recorded during the final cycle are used to calculate the static modulus of elasticity E_c . The cycle during which centering was successfully verified can be considered the first preliminary cycle.

After the measurements are completed, the load on the test specimen is increased at the

prescribed rate until failure. If the compressive strength of the test specimen σ_c differs from the strength of the comparative specimens f_c by more than 20%, this must be noted in the report.

Figure 3: Graphical Representation of the Loading Progression of the Test Specimen

1.5 Processing the Measured Data, Calculation of Stress, and Strains

The length changes of the individual bases (Extensioneters 1 and 2) Δl_1 and Δl_2 are given by the changes in the readings of the displacement gauges:

$$\Delta l_{1(2)} = l_a - l_b \tag{3}$$

where $\Delta l_{1(2)}$ is the length change of the base of the 1st (2nd) extensometer in mm (or μ m), l_a is the displacement gauge reading at the upper stress level in mm (or μ m), and l_b is the displacement gauge reading at the basic stress level in mm (or μ m).

The average length change determined by the extension eters Δl is calculated using the following formula:

$$\Delta l = \frac{\Delta l_1 + \Delta l_2}{2} \tag{4}$$

Care must be taken in further calculations to ensure that the length change Δl of the test specimen is expressed in the correct units (mm or μ m). The average strain $\Delta \varepsilon$ is calculated as follows:

$$\Delta \varepsilon = \frac{\Delta l}{L_0} \tag{5}$$

where Δl is the average length change of the bases in mm or μ m (see Equation 4) and L_0 is the gauge length (bases lenght) of the of the mechanical extensioneter (in this exercise, extensioneters with $L_0 = 200$ mm will be used).

1.6 Calculation of Modulus of Elasticity

The modulus of elasticity is defined as the ratio of the stress change to the corresponding strain change, in accordance with Hooke's law. The average strain change is calculated from the measurements during the loading cycle, as per Equations (4) and (5). The stress change is determined as the difference between the basic and upper stress levels:

$$\Delta \sigma = \sigma_a - \sigma_b \tag{6}$$

The static modulus of elasticity in compression E_c is then calculated as:

$$E_c = \frac{\Delta\sigma}{\Delta\varepsilon} \tag{7}$$

where $\Delta \sigma$ is the stress difference during loading in MPa, and $\Delta \varepsilon$ is the average strain change between the upper and basic stress levels in **m/m**. The resulting modulus of elasticity E_c is expressed in **GPa**, rounded to the nearest 0.1 GPa.

2 Evaluation

The dynamic modulus of elasticity differs from the static modulus of elasticity. The ratio between the static and dynamic values (reduction coefficient) primarily depends on the quality and age of the concrete. Generally, the lower the quality (or younger) the concrete, the lower the ratio between the static and dynamic modulus of elasticity (it can be less than 0.6). Conversely, high-quality (and sufficiently matured) concretes can have this ratio exceed 0.9.

Additionally, the two dynamic methods (ultrasonic pulse velocity vs. resonance – see laboratory reports n. 8 and 9) do not yield identical results. Differences in results from these standardized procedures are also noted in ČSN 73 2011, which provides different reduction coefficients κ_u and κ_r for the same strength classes of concrete, see Table 1.

During the exercise, the reduction coefficient κ_u for the tested concretes will be determined using the following formula:

$$\kappa_u = \frac{E_c}{E_c u} \tag{8}$$

Concrete Class	κ_u	κ_r
C 8/10	0.62	0.81
$C \ 12/15$	0.71	0.86
$C \ 16/20$	0.76	0.88
$C \ 25/30$	0.81	0.90
$C \ 30/37$	0.83	0.91
C $35/45$	0.86	0.93
$C \ 40/50$	0.88	0.94
$C \ 45/55$	0.90	0.95

Table 1: Reduction coefficients κ_u and κ_r for converting the dynamic modulus of elasticity to the static modulus according to ISO 73 2011.

where κ_u is the reduction coefficient, E_{cu} is the dynamic modulus of elasticity determined using the ultrasonic pulse velocity method (see laboratory measurement record 8), and E_c is the static modulus of elasticity.

The result of the static modulus of elasticity test can be compared with the reference (i.e., average) modulus values provided for each strength class in EN 1992-1-1 ed. 2 (Eurocode 2), see Table 2.

Concrete Strength Class	$E_c m \; [\mathbf{GPa}]$
C 12/15	26.0
C 16/20	27.5
$C \ 20/25$	29.0
$C \ 25/30$	30.5
$C \ 30/37$	32.0
$C \ 35/45$	33.5
$C \ 40/50$	35.0
C $45/55$	36.0
C 50/60	37.0

Table 2: Reference values of modulus of elasticity according to Eurocode 2.

MODULUS OF ELASTICITY OF CONCRETE | E

Instructor:

Determination of the static modulus of elasticity E_c of tested concrete. The necessary information for the determination of E_c will be provided by the instructor.

Calculation of stress levels σ_b and σ_a and corresponding forces F_b and $F_a:$

Comparative prism	a [mm]	b [mm]	Fc [<u>kN]</u>	fc [MPa]
LWC2				
OC2				

Prism	a [mm]	b [mm]	<u>ob</u> [MPa]	$\frac{1/3 \cdot f_c = \sigma_a}{[MPa]}$	F _b [kN]	Fa [<u>kN]</u>
LWC1						
OC1						

Measurement of deformations:

	Δl_1	Δl_2	[]			Δl_1	Δl_2	[]
1. p. c.	1. p. c. (F _B) 1. p.	1. p. c.			(F _B)			
(cen.)			(FA)		(cen.)			(FA)
2			(F _B)		2. p. c.			(F _B)
2. p. c.			(FA)	-				(FA)
	(Fв)				(F _B)			
m. c.			(FA)		m. c.			(FA)

Calculation of the static modulus of elasticity E_c :

Calculation of compressive strength of prisms after the E_c test:

(Determine whether the test meets the standard requirements by checking if the actual compressive strength does not differ from the expected compressive strength by more than 20 %.)

Concrete:	
F _{max} [kN]:	
f_c – actual (on tested prisms) [MPa]:	
f_c – expected (on comparative prisms) [MPa]:	
Difference [%]:	

Calculate the reduction coefficient κ_u for the tested concrete and compare it with the normative values (see Table 1). (The values of E_{cu} can be found in the laboratory report no. 8.)

Concrete:	
E_c [GPa]:	
E_{cu} [GPa] (Laboratory report no. 8):	
κ_u [-]:	
Strength class of concrete:	
$\kappa_{u,\text{standard}}$ [-]:	
Difference:	

Compare the calculated static moduli of elasticity with the values from the EN 1992-1-1 standard (see Table 2).

8/9

 \mathbf{E}

Concrete:	
E_c [GPa]:	
E_{cm} [GPa] – Eurocode 2:	
Difference:	

Conclusion:

Tests conducted and report prepared by: