
RESONANCE METHOD R

1 General Principle

Resonance is the tendency of a system to vibrate with a larger amplitude at certain
frequencies than at others, meaning that it vibrates more at these specific frequencies.
The principle of the resonance method is to determine the natural frequencies of test
specimens. To evaluate the dynamic material properties of specimens with regular geo-
metric shapes, the natural frequencies of longitudinal vibration 𝑓𝐿, transverse (flexural)
vibration 𝑓𝑓 , and torsional vibration 𝑓𝑡 are used. Frequency is a physical quantity that
indicates the number of repetitions of a periodic event within a given time interval. The
unit is Hz (= s−1).

2 Determination of Dynamic Properties of Concrete

2.1 Measurement Procedure

The determination of the dynamic modulus of elasticity of concrete is performed according
to standard ČSN 73 1372. The principle of the method involves calculating the modulus
of elasticity, the shear modulus, and Poisson’s ratio from the natural frequencies of a
concrete test specimen.

First, the dimensions of the test prism are measured. The transverse dimensions are
measured with an accuracy of at least 0.1 mm, and the length with an accuracy of at
least 0.5 mm. Then, the mass of the test specimen is determined.

Before performing measurements using the resonance method, the expected value of the
natural frequency of longitudinal vibration 𝑓 ′

𝐿 must be calculated. This can be done, for
example, by using the transmission time of ultrasonic waves through the specimen:

𝑓 ′
𝐿 = 500

𝑇 (1)

where 𝑓 ′
𝐿 is the approximate (expected) value of the natural frequency of longitudinal

vibration in kHz, and 𝑇 is the travel time of the ultrasonic wave through the test specimen
in the “𝐿” direction, measured in 𝜇s.

During the measurement of resonant frequencies, the test specimen is set into vibration,
with known nodal and antinodal points of oscillation. Depending on the type of
oscillation being examined–whether longitudinal, transverse, or torsional–the positions of
the exciter and sensor are chosen accordingly. In the case of impulse-based measurement,
the exciter is an impact from an impulse (impact) hammer, while the sensor is a piezo-
electric sensor. The measurement of the natural frequency of longitudinal vibration
is illustrated in Figure 1. After the impact, the signal is recorded using an oscilloscope.
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This signal is then converted into a curve using a Fast Fourier Transform (FFT) in com-
puter software, representing the response of the specimen to individual frequencies across
the entire frequency spectrum.

Figure 1: Placement of the exciter (B) and sensor (S) for measuring the first natural
frequency of longitudinal vibration (left); shape of the first natural frequency of longitu-
dinal vibration (right).

From the actual natural frequency of longitudinal vibration 𝑓𝐿, the approximate fre-
quency of torsional vibration 𝑓 ′

𝑡 is then calculated as follows:

𝑓 ′
𝑡 = 𝛼 ⋅ 𝑓𝐿, (2)

where 𝑓 ′
𝑡 is the approximate frequency of torsional vibration,

𝑓𝐿 is the measured natural frequency of longitudinal vibration, and

𝛼 is the transverse shape coefficient, which has a value of 0.59 for a prism.

Similarly, the approximate frequency of transverse vibration 𝑓 ′
𝑓 is calculated as follows:

𝑓 ′
𝑓 = 𝛽 ⋅ 𝑓𝐿, (3)

where 𝑓 ′
𝑓 is the approximate frequency of transverse vibration,

𝑓𝐿 is the measured natural frequency of longitudinal vibration, and

𝛽 is the slenderness coefficient of the test specimen. For a prism with a slenderness ratio
of 4 (length 400 mm, transverse dimension 100 mm), 𝛽 has a value of 0.43.

The placement of the sensor and exciter for torsional vibration is shown in Figure 2, and
for transverse vibration in Figure 3. The measurement procedure is otherwise identical
to that for measuring the natural frequency of longitudinal vibration.

2/9



RESONANCE METHOD R

Figure 2: Placement of the exciter (B) and sensor (S) for measuring the first natural
frequency of torsional vibration (left); shape of the first natural frequency of torsional
vibration (right).

Figure 3: Placement of the exciter (B) and sensor (S) for measuring the first natural
frequency of transverse vibration (left); shape of the first natural frequency of transverse
vibration (right).

2.2 Calculation of Dynamic Properties from Measured Values

The value of the dynamic modulus of elasticity of concrete 𝐸𝑐𝑟 can be calculated in
two ways. The first option is to determine the modulus of elasticity using longitudinal
vibration according to the formula:

𝐸𝑐𝑟𝐿 = 4 ⋅ 𝐿2 ⋅ 𝑓2
𝐿 ⋅ 𝐷 (4)

where 𝐸𝑐𝑟𝐿 is the dynamic modulus of elasticity in Pa, 𝐿 is the length of the test specimen
in m, 𝑓𝐿 is the measured natural frequency of longitudinal vibration in Hz, 𝐷 is the density
of the material in kg/m3.

The value of the dynamic modulus of elasticity of concrete can also be determined using
transverse vibration, as follows:

𝐸𝑐𝑟𝑓 = 0.0789 ⋅ 𝑐1 ⋅ 𝐿4 ⋅ 𝑓2
𝑓 ⋅ 𝐷 ⋅ 1

𝑖2 (5)

where 𝐸𝑐𝑟𝑓 is the dynamic modulus of elasticity in Pa, 𝐿 is the length of the test specimen
in m, 𝑐1 is the correction factor, for a prism 100 × 100 × 400 mm, 𝑐1 = 1.40, 𝑓𝑓 is the
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measured natural frequency of transverse vibration in Hz, 𝐷 is the density of the material
in kg/m3, 𝑖 is the radius of gyration of the cross-section of the test specimen in m.

The radius of gyration of the cross-section of the test specimen is given by the formula:

𝑖 = 𝑎√
12

(6)

where 𝑎 is the transverse dimension of the prism.

After calculating 𝐸𝑐𝑟𝐿 and 𝐸𝑐𝑟𝑓 , it is useful to determine the extent to which the cal-
culated values of the dynamic moduli of elasticity differ from each other. The deviation
Δ𝐸𝑐𝑟 is given by:

Δ𝐸𝑐𝑟 = |𝐸𝑐𝑟𝐿 − 𝐸𝑐𝑟𝑓 |
𝐸𝑐𝑟𝐿

⋅ 100 (7)

The value of Δ𝐸𝑐𝑟 is given in % and can be either positive or negative. However, if
its absolute value exceeds 10% with properly executed calculations, it indicates that
either the measurement was incorrect (at least one natural frequency was determined
incorrectly) or the test specimen does not have uniform concrete throughout its volume
(or is damaged, e.g., by microcracks).

In addition to the modulus of elasticity, the dynamic shear modulus of elasticity 𝐺𝑐𝑟
of concrete can also be determined based on measurements using the response method,
according to the formula:

𝐺𝑐𝑟 = 4 ⋅ 𝑘 ⋅ 𝐿2 ⋅ 𝑓2
𝑡 ⋅ 𝐷 (8)

where 𝐺𝑐𝑟 is the dynamic shear modulus in Pa, 𝑘 is the coefficient dependent on the
shape of the cross-section of test specimen, for a square 𝑘 = 1.183, 𝐿 is the length of the
test specimen in m, 𝑓𝑡 is the measured natural frequency of torsional vibration in Hz, 𝐷
is the density of the material in kg/m3.

An additional advantage of the response method is the ability to determine Poisson’s
ratio of the tested material. The values of the dynamic Poisson’s ratio 𝜇𝑐𝑟 of concrete
can be determined as follows:

𝜇𝑐𝑟 = 𝐸𝑐𝑟𝐿
2 ⋅ 𝐺𝑐𝑟

− 1 (9)

Poisson’s ratio 𝜇𝑐𝑟 for common materials can only take values within the interval (0; 0.5).
The calculated Poisson’s ratio is rounded to 0.02.

3 Determination of Concrete Frost Resistance

If a concrete structure or part of it is exposed to water and alternating positive and
negative temperatures, it is necessary to evaluate its resistance to freezing and thawing.
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3.1 Principle of the Test

The core principle of the frost resistance test for concrete lies in assessing the relative
changes in the observed properties of concrete after repeated cycles of freezing and thaw-
ing. The observed property may be the flexural strength, as well as the results of non-
destructive electroacoustic methods.

One freeze-thaw cycle according to ČSN 73 1322 consists of 4 hours of freezing in air,
where the air temperature ranges between -15 °C and -20 °C, and 2 hours of thawing in
water at a temperature of +20 °C. One freeze-thaw (F-T) cycle therefore lasts 6 hours.
The test specimens undergo the required number of cycles in stages, most commonly
every 25 cycles, i.e., weekly.

3.2 Relative Change in Dynamic Modulus of Elasticity

To evaluate the change in the dynamic modulus of elasticity of concrete, i.e., to deter-
mine the relative dynamic modulus of elasticity (RDM) using the response method, it is
necessary to measure the natural frequency of longitudinal vibration 𝑓𝐿 and the natu-
ral frequency of torsional vibration 𝑓𝑡 of the test specimen both before the start of the
test and after freezing and thawing. The degree of internal structural damage can be
determined based on the calculation according to the formula:

RDM𝑛 = (𝑋𝑛
𝑋0

)
2

⋅ 100 % (10)

where RDM𝑛 is the relative dynamic modulus of elasticity in %, 𝑋 is the measured
natural frequency in Hz, 𝑛 is the measurement after 𝑛 freeze-thaw cycles, 0 is the initial
measurement.

3.3 Measurement Procedure

All test specimens in the form of prisms with nominal dimensions of 100 × 100 × 400
mm are first measured non-destructively. The measurement of the natural frequencies of
longitudinal and torsional vibration is carried out according to the procedure described
in section 2.1. This initial measurement is referred to as the “zero” measurement, and
subsequent measurement results are referenced to it.

Then, all prisms are placed in an automatic freeze-thaw cabinet, and freezing and thawing
are initiated. After the appropriate number of F-T cycles, the specimens are removed
from the freezing cabinet. Subsequently, all non-destructive measurements described
in the “zero” measurement are repeated. The specimens are then placed back in the
automated testing device to continue freezing anf thawing.
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3.4 Processing of Measurement Results

From the determined natural frequencies 𝑓𝐿 and 𝑓𝑡, the relative change in the modulus
of elasticity of concrete RDM𝑛 is calculated according to (10). The calculated values are
plotted on a graph as the dependence of the relative change in modulus of elasticity on
the number of freeze-thaw cycles. An example of such a graph is shown in Figure 4. The
results in the selected graph clearly show that concrete “A” is not frost-resistant, as its
dynamic modulus of elasticity decreased below 70% of its original value after 100 F-T
cycles. Conversely, the tested concrete “B” shows almost no internal structural damage
and is therefore frost-resistant.

Figure 4: Example of graphical representation of the relative dynamic moduli of the
tested concretes in dependency with number of F-T cycles.

According to standard ČSN 73 1322, if the decrease in flexural strength is greater than
25%, the concrete is not considered frost-resistant. For the purposes of this exercise,
the same condition will be applied to RDM — the concrete can be declared frost-
resistant if the RDM does not fall below 75% after the required number of
F-T cycles.
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Measurement Record

RESPONSE METHOD H

Instructor:

Determination of Dynamic Properties of Concrete

Determine the dynamic properties on the test prism: modulus of elasticity, shear modulus,
and Poisson’s ratio.

Dimensions, mass, calculation of density, measurement diagram:

Determination of Natural Frequencies of the Test Prism:

Evaluation:

𝐸𝑐𝑟𝐿 =

𝐸𝑐𝑟𝑓 =

𝐺𝑐𝑟 =
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𝜇𝑐𝑟 =

Δ𝐸𝑐𝑟 =

Determination of Concrete Frost Resistance

Determine the extent of internal structural damage in concrete mixtures ”A” and ”B”
due to freezing and thawing. To assess the frost resistance of the evaluated concrete
mixtures, use the Relative Dynamic Modulus of Elasticity (RDM), and conduct the
assessment after 100 freeze-thaw (F-T) cycles.

Description of Concrete A:

Description of Concrete B:

Determination of Natural Frequencies after 0, 25, 50, 75, and 100 F-T Cycles:

Number Concrete A Concrete B

of Cycles 𝑓𝐿 [Hz] 𝑓𝑡 [Hz] 𝑓𝐿 [Hz] 𝑓𝑡 [Hz]
0

25

50

75

100

RDM Calculation:

Number Concrete A Concrete B

of Cycles RDM(FL) RDM(FT) RDM(FL) RDM(FT)

0

25

50

75

100
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Graphical Evaluation:

Conclusion:

Tests conducted and report prepared by:
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